Scratch Work for Problem 0

Note that this scratch work **does not** constitute a valid proof since it is a form of backwards reasoning; we are starting with our desired result, and working backwards to obtain some suitable value of c and n_0 .

The direct proofs are available on the section slides and the section handout solutions.

For each of the following, prove that $f(n) \in \mathcal{O}(q)$

(a) f(n) = 7n $g(n) = \frac{n}{10}$ $\frac{f(n) - m}{\text{Goal: } f(n) \le c \cdot g(n) \Rightarrow 7n \le c \cdot \frac{n}{10}}$ Working backwards: $7n \le c \cdot \frac{n}{10}$ $7n \cdot 10 \le c \cdot \frac{n}{10} \cdot 10$ $70n \leq c \cdot n$ $70 \le c \quad \leftarrow \text{ constraint for which our goal } 7n \le c \cdot \frac{n}{10} \text{ holds}$

Since n is not a variable in the above constraint, the constraint holds for all values of n. Therefore we can choose any value of n_0 as long as $c \ge 70$.

One such choice is $n_0 = 1$ and c = 70

 $g(n) = 3n^3$ Goal: $f(n) \le c \cdot g(n) \Rightarrow 1000 \le c \cdot 3n^3$ (b) f(n) = 1000

f(n) is a constant function here, which makes things easy. We just need some choice of c and n_0 such that $3cn^3 \ge 1000$ for all $n \ge n_0$.

One such choice is $n_0 = 1000$ and c = 1

(c)
$$f(n) = 7n^2 + 3n$$
 $g(n) = n^4$
Goal: $f(n) \le c \cdot g(n) \Rightarrow 7n^2 + 3n \le c \cdot n^4$
Property C.1: $n^4 \ge n^3 \ge n^2 \ge n$ when $n \ge 1$
If $n_0 = 1$, then for all $n \ge n_0 = 1$
 $7n^2 + 3n \le c \cdot n^4$
 $7n^2 + 3n \le 7n^4 + 3n^4 \le c \cdot n^4 \quad \leftarrow 7n^2 \le 7n^4$ and $3n \le 3n^4$ by Property C.1
 $10n^4 \le c \cdot n^4$
 $10 \le c \quad \leftarrow$ constraint for which our goal $7n^2 + 3n \le c \cdot n^4$ holds
The constraint holds when $n_0 = 1$. Therefore we can choose any value $c \ge 10$ as long as $n_0 = 1$.
One such choice is $n_0 = 1$ and $c = 10$

(d) $f(n) = n + 2n \log n$

 $g(n) = n \log n$

Goal: $f(n) \leq c \cdot g(n) \Rightarrow n + 2n \log n \leq c \cdot n \log n$ Property D.1: $1 \leq \log n$ when $n \geq 2$ (recall that we always use log with base-2) If $n_0 = 2$, then for all $n \geq n_0 = 2$ $n + 2n \log n \leq c \cdot n \log n$ $n + 2n \log n \leq n \log n + 2n \log n \leq c \cdot n \log n \quad \leftarrow n \leq n \log n$ by Property D.1 $3n \log n \leq c \cdot n \log n$ $3 \leq c \quad \leftarrow \text{ constraint for which our goal } n + 2n \log n \leq c \cdot n \log n \text{ holds}$ The constraint holds when $n_0 = 2$. Therefore we can choose any value $c \geq 3$ as long as $n_0 = 2$. One such choice is $n_0 = 2$ and c = 3